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Abstract: This paper is concerned with an almost periodic Volterra integro dynamic equation on time scales.
Based on the theory of calculus on time scales, by using differential inequality theory and constructing a suitable
Lyapunov functional, sufficient conditions which guarantee the permanence and the global attractivity of the system
are obtained. Then, by using the properties of almost periodic functions and Razumikhin type theorem, sufficient
conditions which guarantee the existence of a positive almost periodic solution of the system are obtained. Finally,
an example and numerical simulations are presented to illustrate the feasibility and effectiveness of the results.
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1 Introduction
In the past few years, many papers have appeared
in the literature on Volterra equations on particular
time scales such as R and Z; see, for example, [1-
4]. However, in the natural world, there are many
species whose developing processes are both contin-
uous and discrete. Hence, using the only differential
equation or difference equation can’t accurately de-
scribe the law of their developments. Therefore, there
is a need to establish correspondent dynamic models
on new time scales, one may see [5-15].

Recently, Volterra integro dynamic equations on
time scales received more researchers’ special atten-
tion, see, for example, [16,17] and the references
therein. However, ecosystem in the real world are
continuously disturbed by unpredictable forces which
can result in changes in the biological parameters.
Hence, if the various constituent components of the
temporally nonuniform environment is with incom-
mensurable (nonintegral multiples) periods, then one
has to consider the environment to be almost periodic
since there is no a priori reason to expect the existence
of periodic solutions. Therefore, if we consider the ef-
fects of the environmental factors, the assumption of
almost periodicity is more realistic, more important
and more general.

To the best of the authors’ knowledge, there are
few papers published on the dynamic behaviors (per-
manence, global attractivity, almost periodicity, etc.)
of Volterra integro dynamic equation on time scales.

Motivated by the above, in the present paper, we

shall study an almost periodic Volterra integro dy-
namic equation on time scales as follows:

x∆(t) = x(t)[r(t)− a(t)x(t)− b(t)x(σ(t))

−c(t)
∫ t

−∞
e−η(t, σ(s))x(s)∆s], (1)

where t ∈ T, T is an almost time scale.
For convenience, we introduce the notation

fu = sup
t∈T

f(t), f l = inf
t∈T

f(t),

where f is a positive and bounded function. Through-
out this paper, we assume that all the coefficients
r(t), a(t), b(t), c(t), η(t) of the almost periodic sys-
tem (1) are continuous, positive almost periodic func-
tions, and

min{rl, al, bl, cl, ηl} > 0,

max{ru, au, bu, cu, ηu} < +∞.

The initial condition of system (1) in the form

x(t0) = x0, x0 > 0, t0 ∈ T. (2)

The aim of this paper is, based on the theory of
calculus on time scales, by using differential inequal-
ity theory and constructing a suitable Lyapunov func-
tional, to obtain sufficient conditions for the perma-
nence and the global attractivity of system (1); by
using the properties of almost periodic functions and
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Razumikhin type theorem, to obtain sufficient condi-
tions for the existence of a positive almost periodic
solution of system (1).

In this paper, for each interval I of T, we denote
by IT = I ∩ T.

2 Preliminaries

Let T be a nonempty closed subset (time scale) of R.
The forward and backward jump operators σ, ρ : T →
T and the graininess µ : T → R+ are defined, respec-
tively, by

σ(t) = inf{s ∈ T : s > t},
ρ(t) = sup{s ∈ T : s < t},
µ(t) = σ(t)− t.

A point t ∈ T is called left-dense if t > inf T
and ρ(t) = t, left-scattered if ρ(t) < t, right-dense if
t < supT and σ(t) = t, and right-scattered if σ(t) >
t. If T has a left-scattered maximum m, then Tk =
T\{m}; otherwise Tk = T. If T has a right-scattered
minimum m, then Tk = T\{m}; otherwise Tk = T.

A function f : T → R is right-dense continuous
provided it is continuous at right-dense point in T and
its left-side limits exist at left-dense points in T. If f
is continuous at each right-dense point and each left-
dense point, then f is said to be a continuous function
on T. The set of continuous functions f : T → R will
be denoted by C(T) = C(T,R).

For y : T → R and t ∈ Tk, we define the delta
derivative of y(t), y∆(t), to be the number (if it exists)
with the property that for a given ε > 0, there exists a
neighborhood U of t such that∣∣[y(σ(t))− y(s)]− y∆(t)[σ(t)− s]

∣∣ < ε|σ(t)− s|

for all s ∈ U.
If y is continuous, then y is right-dense continu-

ous, and y is delta differentiable at t, then y is contin-
uous at t.

Let y be right-dense continuous, if Y ∆(t) = y(t),
then we define the delta integral by∫ t

a
y(s)∆s = Y (t)− Y (a).

The basic theories of calculus on time scales, one
can see [18].

A function p : T → R is called regressive pro-
vided 1+µ(t)p(t) ̸= 0 for all t ∈ Tk. The set of all re-
gressive and rd-continuous functions p : T → R will
be denoted by R = R(T,R). Define the set R+ =
R+(T,R) = {p ∈ R : 1 + µ(t)p(t) > 0,∀ t ∈ T}.

If r is a regressive function, then the generalized
exponential function er is defined by

er(t, s) = exp

{∫ t

s
ξµ(τ)(r(τ))∆τ

}
for all s, t ∈ T, with the cylinder transformation

ξh(z) =

{
Log(1+hz)

h , if h ̸= 0,
z, if h = 0.

Let p, q : T → R be two regressive functions,
define

p⊕q = p+q+µpq, ⊖p = − p

1 + µp
, p⊖q = p⊕(⊖q).

Lemma 1. (see [18]) If p, q : T → R be two regres-
sive functions, then
(i) e0(t, s) ≡ 1 and ep(t, t) ≡ 1;
(ii) ep(σ(t), s) = (1 + µ(t)p(t))ep(t, s);
(iii) ep(t, s) = 1

ep(s,t)
= e⊖p(s, t);

(iv) ep(t, s)ep(s, r) = ep(t, r);
(v) ep(t,s)eq(t,s)

= ep⊖q(t, s);

(vi) (ep(t, s))∆ = p(t)ep(t, s).

Lemma 2. (see [19]) Assume that a > 0, b > 0 and
−a ∈ R+. Then

y∆(t) ≥ (≤)b− ay(t), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≥ (≤)
b

a
[1+(

ay(t0)

b
−1)e(−a)(t, t0)], t ∈ [t0,∞)T.

Lemma 3. (see [19]) Assume that a > 0, b > 0. Then

y∆(t) ≤ (≥)y(t)(b−ay(σ(t))), y(t) > 0, t ∈ [t0,∞)T

implies

y(t) ≤ (≥)
b

a
[1+(

b

ay(t0)
−1)e⊖b(t, t0)], t ∈ [t0,∞)T.

Let T be a time scale with at least two positive
points, one of them being always one: 1 ∈ T, there
exists at least one point t ∈ T such that 0 < t ̸= 1.
Define the natural logarithm function on the time scale
T by

LT(t) =

∫ t

1

1

τ
∆τ, t ∈ T ∩ (0,+∞).

Lemma 4. (see [20]) Assume that x : T → R+ is
strictly increasing and T̃ := x(T) is a time scale. If
x∆(t) exists for t ∈ Tk, then

∆

∆t
LT(x(t)) =

x∆(t)

x(t)
.
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Lemma 5. (see [18]) Assume that f, g : T → R are
differentiable at t ∈ Tk, then fg : T → R is differen-
tiable at t with

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t)

= f(t)g∆(t) + f∆(t)g(σ(t)).

Lemma 6. (see [18]) Let a ∈ Tk, if f : T× Tk → R
is continuous at (t, t), where t ∈ Tk with t > a, and
f∆(t, ·) is rd-continuous on [a, σ(t)]T, then g(t) =∫ t
a f(t, s)∆s is differentiable at t with

g∆(t) =

∫ t

a
f∆(t, s)∆s+ f(σ(t), t),

where f∆ denotes the derivative of f with respect to
the first variable.

Definition 7. (see [21]) A time scale T is called an
almost periodic time scale if

Π = {τ ∈ R : t± τ ∈ T, ∀t ∈ T}.

Definition 8. (see [21]) Let T be an almost periodic
time scale. A function f : T → R is called an almost
periodic function if the ε-translation set of f

E{ε, f} = {τ ∈ Π : |f(t+ τ)− f(t)| < ε, ∀t ∈ T}

is a relatively dense set in T for all ε > 0; that is, for
any given ε > 0, there exists a constant l(ε) > 0, such
that in any interval of length l(ε), there exists at least
a τ ∈ E{ε, f} such that

|f(t+ τ)− f(t)| < ε,∀t ∈ T.

τ is called the ε-translation number of f and l(ε) is
called the inclusion length of E{ε, f}.

The relevant definitions and the properties of al-
most periodic functions, see [21-24]. Similar to the
proof of Corollary 1.2 in [24], we can get the follow-
ing lemma.

Lemma 9. Let T be an almost periodic time scale. If
f(t), g(t) are almost periodic functions, then, for any
ε > 0, E{ε, f} ∩ E{ε, g} is a nonempty relatively
dense set in T; that is, for any given ε > 0, there exists
a constant l(ε) > 0, such that in any interval of length
l(ε), there exists at least a τ ∈ E{ε, f}∩E{ε, g} such
that

|f(t+ τ)− f(t)| < ε, |g(t+ τ)− g(t)| < ε, ∀t ∈ T.

Let C = C([−τ, 0]T,Rn),H∗ ∈ R+. Denote
CH∗ = {φ,φ ∈ C, ∥φ∥ < H∗}, SH∗ = {x, x ∈
Rn, ∥x∥ < H∗}, ∥φ∥ = sup

θ∈[−τ,0]T
|φ(θ)|.

Consider the system

x∆ = f(t, x), (3)

where f(t, ϕ) is continuous in (t, ϕ) ∈ R × C and
almost periodic in t uniformly for ϕ ∈ CH∗ , CH∗ ⊆
C. ∀α > 0,∃L(α) > 0 such that |f(t, ϕ)| ≤ L(α), as
t ∈ T, ϕ ∈ Cα.

In order to investigate the almost periodic solu-
tion of system (3), we introduce the associate product
system of system (3)

x∆ = f(t, x), y∆ = f(t, y). (4)

Lemma 10. (see [25]) Assume that there exists a
Lyapunov function V (t, x, y) defined on [0,+∞)T ×
SH∗ × SH∗ , which satisfies the following conditions:

(1) α(|x−y|) ≤ V (t, x, y) ≤ β(|x−y|), where α(s)
and β(s) are continuous, increasing and positive
definite;

(2) |V (t, x1, y1) − V (t, x2, y2)| ≤ ω(|x1 − x2| +
|y1 − y2|), where ω > 0 is a constant;

(3) D+V ∆
(4)(t, x, y) ≤ −λV (t, x, y), where λ > 0 is

a constant.

Moreover, assumes that (3) has a solution ξ(t) such
that ∥ξ∥ ≤ H < H∗ for t ∈ [t0,+∞)T. Then sys-
tem (3) has a unique almost periodic solution which
is uniformly asymptotic stable.

Now, we define a new variable

y(t) =

∫ t

−∞
e−η(t, σ(s))x(s)∆s, t ∈ T, (5)

then by Lemma 1 and Lemma 6, system (1) can be
transformed into the following system

x∆(t) = x(t)[r(t)− a(t)x(t)− b(t)x(σ(t))
−c(t)y(t)],

y∆(t) = −η(t)y(t) + x(t).
(6)

The initial condition of system (6) is

x(t0) = x0, y(t0) = y0, x0 > 0, y0 > 0, t0 ∈ T. (7)

System (6) and system (1) have the same dynamic be-
haviors.

3 Permanence and attractivity

Assume that the coefficients of system (6) satisfy

(H1) −η ∈ R+;
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(H2) r
l > auM1 + cuM2.

Theorem 11. Let (x(t), y(t)) be any positive solution
of system (6) with initial condition (7). If (H2) hold,
then system (6) is permanent, that is, any positive so-
lution (x(t), y(t)) of system (6) satisfies

m1 ≤ lim inf
t→+∞

x(t) ≤ lim sup
t→+∞

x(t) ≤M1, (8)

m2 ≤ lim inf
t→+∞

y(t) ≤ lim sup
t→+∞

y(t) ≤M2, (9)

especially if m1 ≤ x0 ≤M1, m2 ≤ y0 ≤M2, then

m1 ≤ x(t) ≤M1, m2 ≤ y(t) ≤M2, t ∈ [t0,+∞)T,

where

M1 =
ru

bl
, M2 =

M1

ηl
,

m1 =
rl − auM1 − cuM2

bu
,

m2 =
m1

ηu
.

Proof. Assume that (x(t), y(t)) be any positive solu-
tion of system (6) with initial condition (7). From the
first equation of system (6), we have

x∆(t) ≤ x(t)(ru − blx(σ(t))). (10)

By Lemma 3, we can get

lim sup
t→+∞

x(t) ≤ ru

bl
:=M1.

Then, for arbitrarily small positive constant ε > 0,
there exists a T1 > 0 such that

x(t) < M1 + ε, ∀t ∈ [T1,+∞]T.

From the second equation of system (6), when t ∈
[T1,+∞)T,

y∆(t) < −ηly(t) + (M1 + ε).

Let ε→ 0, then

y∆(t) ≤ −ηly(t) +M1. (11)

By Lemma 2, we can get

lim sup
t→+∞

y(t) =
M1

ηl
:=M2.

Then, for arbitrarily small positive constant ε > 0,
there exists a T2 > T1 such that

y(t) < M2 + ε, ∀t ∈ [T2,+∞]T.

On the other hand, from the first equation of sys-
tem (6), when t ∈ [T2,+∞)T,

x∆(t) > x(t)[rl − au(M1 + ε)− bux(σ(t))

−cu(M2 + ε)].

Let ε→ 0, then

x∆(t) ≥ x(t)[rl − auM1 − bux(σ(t))− cuM2]. (12)

By Lemma 3, we can get

lim inf
t→+∞

x(t) =
rl − auM1 − cuM2

bu
:= m1.

Then, for arbitrarily small positive constant ε > 0,
there exists a T3 > T2 such that

x(t) > m1 − ε, ∀t ∈ [T3,+∞]T.

From the second equation of system (6), when t ∈
[T3,+∞)T,

y∆(t) > −ηuy(t) + (m1 − ε).

Let ε→ 0, then

y∆(t) ≥ −ηuy(t) +m1. (13)

By Lemma 2, we can get

lim inf
t→+∞

y(t) =
m1

ηu
:= m2.

Then, for arbitrarily small positive constant ε > 0,
there exists a T4 > T3 such that

y(t) > m2 − ε, ∀t ∈ [T4,+∞]T.

In special case, if m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤
M2, by Lemma 2 and Lemma 3, it follows from (10)-
(13) that

m1 ≤ x(t) ≤M1, m2 ≤ y(t) ≤M2, t ∈ [t0,+∞)T,

This completes the proof.

Theorem 12. In addition to conditions (H1) and
(H2), assume further that the coefficients of system
(6) satisfy the following conditions:

(H3) a
l − 1 > 0;

(H4) η
l − cu > 0.

Then the solution of system (6) is globally attractive.
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Proof. Let z1(t) = (x1(t), y1(t)) and z2(t) =
(x2(t), y2(t)) be any two positive solutions of system
(6). It follows from (8)-(9) that for sufficient small
positive constant ε0 (0 < ε0 < min{m1,m2}), there
exists a T > 0 such that

m1 − ε0 < xi(t) < M1 + ε0,

m2 − ε0 < yi(t) < M2 + ε0, (14)
∀ t ∈ [T,+∞)T, i = 1, 2.

Since xi(t), i = 1, 2 are positive, bounded and
differentiable functions on T, then there exists a posi-
tive, bounded and differentiable function m(t), t ∈ T,
such that xi(t)(1+m(t)), i = 1, 2 are strictly increas-
ing on T. By Lemma 4 and Lemma 5, we have

∆

∆t
LT(xi(t)[1 +m(t)])

=
x∆i (t)[1 +m(t)] + xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]

=
x∆i (t)

xi(t)
+
xi(σ(t))m

∆(t)

xi(t)[1 +m(t)]
, i = 1, 2.

Here, we can choose a functionm(t) such that |m∆(t)|
1+m(t)

is bounded on T, that is, there exist two positive con-
stants ζ > 0 and ξ > 0 such that 0 < ζ < |m∆(t)|

1+m(t) < ξ,
∀t ∈ T.

Set

V (t) = |e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+|y1(t)− y2(t)|),

where δ ≥ 0 is a constant (if µ(t) = 0, then δ = 0;
if µ(t) > 0, then δ > 0). It follows from the mean
value theorem of differential calculus on time scales
for t ∈ [T,+∞)T,

1

M1 + ε0
|x1(t)− x2(t)|

≤ |LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|

≤ 1

m1 − ε0
|x1(t)− x2(t)|. (15)

Let γ = min{(m1 − ε0)(a
l − 1), ηl − cu}. We

divide the proof into two cases.
Case I. If µ(t) > 0, set δ > max{(bu +

ξ
m1

)M1, γ} and 1− µ(t)δ < 0. Calculating the upper
right derivatives of V (t) along the solution of system
(6), it follows from (14), (15), (H3) and (H4) that for

t ∈ [T,+∞)T,

D+V ∆(t)

= |e−δ(t, T )|sgn(x1(t)− x2(t))

[
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

+
m∆(t)

1 +m(t)

(
x1(σ(t))

x1(t)
− x2(σ(t))

x2(t)

)]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|
= |e−δ(t, T )|sgn(x1(t)− x2(t))

×
[
− a(t)(x1(t)− x2(t))

−b(t)(x1(σ(t))− x2(σ(t)))

−c(t)(y1(t)− y2(t))]

+
m∆(t)

1 +m(t)

x1(σ(t))x2(t)− x1(t)x2(σ(t))

x1(t)x2(t)

]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))

×[−η(t)(y1(t)− y2(t)) + (x1(t)− x2(t))]

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|
= |e−δ(t, T )|sgn(x1(t)− x2(t))

×
[
− a(t)(x1(t)− x2(t))

−b(t)(x1(σ(t))− x2(σ(t)))

−c(t)(y1(t)− y2(t))]

+
m∆(t)

1 +m(t)

(
x1(σ(t))(x2(t)− x1(t))

x1(t)x2(t)

+
x1(t)(x1(σ(t))− x2(σ(t)))

x1(t)x2(t)

)]
−δ|e−δ(t, T )||LT(x1(σ(t))(1 +m(σ(t))))

−LT(x2(σ(t))(1 +m(σ(t))))|
+|e−δ(t, T )|sgn(y1(t)− y2(t))

×[−η(t)(y1(t)− y2(t)) + (x1(t)− x2(t))]

−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|

≤ −|e−δ(t, T )|
[
a(t)− 1 +

|m∆(t)|
1 +m(t)

x1(σ(t))

x1(t)x2(t)

]
×|x1(t)− x2(t)|

−|e−δ(t, T )|
[

δ

M1 + ε0
− b(t)

− |m∆(t)|
1 +m(t)

1

x2(t)

]
|x1(σ(t))− x2(σ(t))|

−|e−δ(t, T )|(η(t)− c(t))|y1(t)− y2(t)|
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−δ|e−δ(t, T )||y1(σ(t))− y2(σ(t))|
≤ −|e−δ(t, T )|(al − 1)|x1(t)− x2(t)|

−|e−δ(t, T )|(ηl − cu)|y1(t)− y2(t)|
≤ −|e−δ(t, T )|((m1 − ε0)(a

l − 1)

×|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|)

≤ −γ|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
= −γV (t). (16)

By the comparison theorem and (16), we have

V (t) ≤ |e−γ(t, T )|V (T )

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

that is,

|e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

then

1

M1 + ε0
|x1(t)− x2(t)|+ |y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
×|e(−γ)⊖(−δ)(t, T )|. (17)

Since 1 − µ(t)δ < 0 and 0 < γ < δ, then (−γ) ⊖
(−δ) < 0. It follows from (17) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

Case II. If µ(t) = 0, set δ = 0, then σ(t) =
t and |e−δ(t, T )| = 1. Calculating the upper right
derivatives of V (t) along the solution of system (6), it
follows from (14), (15), (H3) and (H4) that for t ∈
[T,+∞)T,

D+V ∆(t)

= sgn(x1(t)− x2(t))

(
x∆1 (t)

x1(t)
− x∆2 (t)

x2(t)

)
+sgn(y1(t)− y2(t))(y

∆
1 (t)− y∆2 (t))

= sgn(x1(t)− x2(t))[−(a(t) + b(t))

×(x1(t)− x2(t))− c(t)(y1(t)− y2(t))]

+sgn(y1(t)− y2(t))[−η(t)(y1(t)− y2(t))

+(x1(t)− x2(t))]

≤ −(a(t) + b(t)− 1)|x1(t)− x2(t)|
−(η(t)− c(t))|y1(t)− y2(t)|

≤ −((m1 − ε0)(a
l + bl − 1)

×|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+(ηl − cu)|y1(t)− y2(t)|)

≤ −γ̂(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|)
≤ −γV (t), (18)

where γ̂ = min{(m1 − ε0)(a
l+ bl− 1), ηl− cu}. By

the comparison theorem and (18), we have

V (t) ≤ |e−γ(t, T )|V (T )

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

that is,

|LT(x1(t)(1 +m(t)))− LT(x2(t)(1 +m(t)))|
+|y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|,

then

1

M1 + ε0
|x1(t)− x2(t)|+ |y1(t)− y2(t)|

< 2

(
M1 + ε0
m1 − ε0

+M2 + ε0

)
|e−γ(t, T )|. (19)

It follows from (19) that

lim
t→+∞

|x1(t)− x2(t)| = 0, lim
t→+∞

|y1(t)− y2(t)| = 0.

From the above discussion, we can see that the
solution of system (6) is globally attractive. This com-
pletes the proof.

4 Almost periodic solution

Let S(T) be the set of all solutions (x(t), y(t)) of sys-
tem (6) satisfying m1 ≤ x(t) ≤ M1, m2 ≤ y(t) ≤
M2 for all t ∈ T.

Lemma 13. S(T) ̸= ∅.

Proof. By Theorem 11, we see that for any t0 ∈ T
with m1 ≤ x0 ≤ M1, m2 ≤ y0 ≤ M2, system (6)
has a solution (x(t), y(t)) satisfying m1 ≤ x(t) ≤
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M1, m2 ≤ y(t) ≤ M2, t ∈ [t0,+∞)T. Since r(t),
a(t), b(t), c(t), η(t), σ(t) are almost periodic, by
Lemma 9, there exists a sequence {tn}, tn → +∞
as n→ +∞ such that r(t+ tn) → r(t), a(t+ tn) →
a(t), b(t+ tn) → b(t), c(t+ tn) → c(t), η(t+ tn) →
η(t), σ(t+ tn) → σ(t) as n→ +∞ uniformly on T.

We claim that {x(t+tn)} and {y(t+tn)} are uni-
formly bounded and equi-continuous on any bounded
interval in T.

In fact, for any bounded interval [α, β]T ⊂ T,
when n is large enough, α + tn > t0, then t + tn >
t0, ∀t ∈ [α, β]T. So, m1 ≤ x(t + tn) ≤ M1, m2 ≤
y(t+tn) ≤M2 for any t ∈ [α, β]T, that is, {x(t+tn)}
and {y(t+ tn)} are uniformly bounded. On the other
hand, ∀t1, t2 ∈ [α, β]T, from the mean value theorem
of differential calculus on time scales, we have

|x(t1 + tn)− x(t2 + tn)|
≤ M1[r

u + (au + bu)M1 + cuM2]

×|t1 − t2|, (20)
|y(t1 + tn)− y(t2 + tn)|

≤ (ηuM2 +M1)|t1 − t2|. (21)

The inequalities (20) and (21) show that {x(t + tn)}
and {y(t + tn)} are equi-continuous on [α, β]T. By
the arbitrary of [α, β]T, the conclusion is valid.

By Ascoli-Arzela theorem, there exists a subse-
quence of {tn}, we still denote it as {tn}, such that

x(t+ tn) → p(t), y(t+ tn) → q(t),

as n → +∞ uniformly in t on any bounded interval
in T. For any θ ∈ T, we can assume that tn + θ ≥ t0
for all n, and let t ≥ 0, integrate both equations of
system (6) from tn + θ to t+ tn + θ, we have

x(t+ tn + θ)− x(tn + θ)

=

∫ t+tn+θ

tn+θ
x(s)[r(s)− a(s)x(s)

−b(s)x(σ(s))− c(s)y(s)]∆s

=

∫ t+θ

θ
x(s+ tn)[r(s+ tn)

−a(s+ tn)x(s+ tn)

−b(s+ tn)x(σ(s+ tn))

−c(s+ tn)y(s+ tn)]∆s,

and

y(t+ tn + θ)− y(tn + θ)

=

∫ t+tn+θ

tn+θ
[−η(s)y(s) + x(s)]∆s

=

∫ t+θ

θ
[−η(s+ tn)y(s+ tn) + x(s+ tn)]∆s.

Using the Lebesgues dominated convergence theo-
rem, we have

p(t+ θ)− p(θ) =

∫ t+θ

θ
x(s)[r(s)− a(s)x(s)

−b(s)x(σ(s))− c(s)y(s)]∆s,

q(t+ θ)− q(θ) =

∫ t+θ

θ
[−η(s)y(s) + x(s)]∆s.

This means that (p(t), q(t)) is a solution of system (6),
and by the arbitrary of θ, (p(t), q(t)) is a solution of
system (6) on T. It is clear that

m1 ≤ p(t) ≤M1, m2 ≤ q(t) ≤M2, ∀t ∈ T.

This completes the proof.

Theorem 14. Assume that the conditions (H1)−(H4)
hold, then system (6) has a unique positive almost pe-
riodic solution which is globally attractive.

Proof. Consider the associated product system of sys-
tem (6),

x∆1 (t) = x1(t)[r(t)− a(t)x1(t)
−b(t)x1(σ(t))− c(t)y1(t)],

y∆1 (t) = −η(t)y1(t) + x1(t),
x∆2 (t) = x2(t)[r(t)− a(t)x2(t)

−b(t)x2(σ(t))− c(t)y2(t)],
y∆2 (t) = −η(t)y2(t) + x2(t).

(22)

Let z(t) = (z1(t), z2(t)) be a positive solution of
product system (22), where

z1(t) = (x1(t), y1(t)), z2(t) = (x2(t), y2(t)).

By using the same Lyapunov functional in Section 3.
Set

V (t, z1(t), z2(t))

= |e−δ(t, T )|(|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|
+|y1(t)− y2(t)|).

It follows from (15) that

min{ 1

M1 + ε0
, 1}|e−δ(t, T )|(|x1(t)− x2(t)|

+|y1(t)− y2(t)|)
≤ V (t, z1(t), z2(t))

≤ max{ 1

m1 − ε0
, 1}|e−δ(t, T )|(|x1(t)− x2(t)|

+|y1(t)− y2(t)|),
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then

min{ 1

M1 + ε0
, 1}|e−δ(t, T )|(|z1(t)− z2(t)|)

≤ V (t, z1(t), z2(t))

≤ max{ 1

m1 − ε0
, 1}|e−δ(t, T )|(|z1(t)− z2(t)|).

Therefore, condition (1) in Lemma 10 is satisfied.
Since

|V (t, z1(t), z2(t))− V (t, z̃1(t), z̃2(t))|
= |e−δ(t, T )|

∣∣|LT(x1(t)(1 +m(t)))

−LT(x2(t)(1 +m(t)))|+ |y1(t)− y2(t)|
−|LT(x̃1(t)(1 +m(t)))

−LT(x̃2(t)(1 +m(t)))| − |ỹ1(t)− ỹ2(t)|
∣∣

≤ |LT(x1(t)(1 +m(t)))

−LT(x̃1(t)(1 +m(t)))|+ |y1(t)− ỹ1(t)|
+|LT(x2(t)(1 +m(t)))

−LT(x̃2(t)(1 +m(t)))|+ |y2(t)− ỹ2(t)|

≤ max{ 1

m1 − ε0
, 1}(|x1(t)− x̃1(t)|

+|y1(t)− ỹ1(t)|
+|x2(t)− x̃2(t)|+ |y2(t)− ỹ2(t)|)

= max{ 1

m1 − ε0
, 1}(|z1(t)− z̃1(t)|

+|z2(t)− z̃2(t)|).

Therefore, condition (2) in Lemma 10 holds.
Next, we shall prove condition (3) in Lemma 10

holds. By the proof of Theorem 12. Calculating the
upper right derivatives of V (t, z1(t), z2(t)) along the
solution of system (22), it follows from (16) and (18)
that for t ∈ [T,+∞)T,

D+V ∆(t, z1(t), z2(t)) ≤ −γV (t, z1(t), z2(t)).

Therefore, condition (3) in Lemma 10 holds.
From the above discussion, we can see that all

conditions in Lemma 10 hold. By Lemma 10 and
Lemma 13, system (6) has a unique almost periodic
solution which is uniformly asymptotic stable. To-
gether with Theorem 11 and Theorem 12 that sys-
tem (6) has a unique positive almost periodic solu-
tion which is globally attractive. This completes the
proof.

Remark 15. Since system (1) and system (6) have
the same dynamic behaviors, then under conditions
(H1)-(H2), system (1) is permanent; under conditions
(H1)-(H4), system (1) has a unique positive almost
periodic solution which is globally attractive.

5 Example and simulations

Consider the following system on time scales

x∆(t)

= x(t)[2.75 + 0.25 sin
√
2t

−(1.75 + 0.25 sin t)x(t)− 5x(σ(t)) (23)

−0.2

∫ t

−∞
e−(0.8+0.1 cos

√
3t)(t, σ(s))x(s)∆s].

Then, system (23) can be transformed into the follow-
ing system

x∆(t) = x(t)[2.75 + 0.25 sin
√
2t

−(1.75 + 0.25 sin t)x(t)
−5x(σ(t))− 0.2y(t)],

y∆(t) = −(0.8 + 0.1 cos
√
3t)y(t) + x(t).

By a direct calculation, we can get

ru = 3, rl = 2.5, au = 2, al = 1.5,

bu = bl = 5, cu = cl = 0.2,

ηu = 0.9, ηl = 0.7,

M1 = 0.6000, M2 = 0.8571,

auM1 + cuM2 = 1.0286.

Obviously,
−η ∈ R+,

rl − (auM1 + cuM2) = 1.4714 > 0,

al − 1 = 0.5 > 0,

ηl − cu = 0.5 > 0,

that is, the conditions (H1)−(H4) hold. According to
Theorem 14 and Remark 15, system (23) has a unique
globally attractive positive almost periodic solution.

Dynamic simulations of system (23) with T = R
and T = Z, see Figures 1 and 2, respectively. From
the Figures 1 and 2, we can see that x(t) is globally
attractive.

6 Conclusion

This paper is concerned with an almost periodic
Volterra integro dynamic equation on time scales.
Firstly, we introduced a new variable, based on the
theory of calculus on time scales, the Volterra integro
dynamic equation was transformed into a nonlinear
differential equations, then, by using differential in-
equality theory and constructing a suitable Lyapunov
functional, sufficient conditions which guarantee the
permanence and the global attractivity of the system
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Figure 1: T = R. Dynamics behavior of system (23)
with x(0) = {0.2; 0.4; 0.6}.
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Figure 2: T = Z. Dynamics behavior of system (23)
with x(0) = {0.2; 0.5; 0.6}.

are obtained; by using the properties of almost pe-
riodic functions and Razumikhin type theorem, suf-
ficient conditions which guarantee the existence of a
positive almost periodic solution of the system are ob-
tained.

The results obtained in this paper can be applied
to the analysis of many other periodic and almost pe-
riodic dynamical systems, one may consider the sys-
tems which have been studied in [26-30].
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